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Abstract

First-principles computational techniques are employed on Rutile TiO2 and
tetragonal BaTiO3. The computations done for the second-order elastic
constants (SOEC) and equations of state. The bulk modulus is computed
by two independent methods and compared with experiment. A variety of
potentials and basis sets are used. The impact on the computational values
due to the potentials, basis sets, and the crystalline geometry optimization
is discussed. A novel computational formalism is employed to extract the
anomaly in the elastic properties of tetragonal BaTiO3.
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The article is subdivided into two major sections. The first section employs
the ab-initio and DFT computational algorithms to compute the elastic con-
stants and bulk moduli of rutile TiO2 crystal. In the second section,the prior
results on Rutile TiO2 are utilized to expose the complexity in computations
that are carried out on tetragonal BaTiO3.

1. Part I: Computations On Rutile T iO2

Titanium dioxide (TiO2) is an important transition metal oxide, which
exists in anatase, rutile and brookite phases [1]. There is a considerable in-
terest in the fabrication [2] of this material. It is employed extensively in
semiconductors, optical devices, photovoltaic cells, gas sensors, and electro-
chemical storage devices [3].

Due to its technological importance, the crystalline structure and proper-
ties of rutile TiO2 phases has remained a major focus of researchers [1, 4, 5].
The ab-initio Hartree Fock (HF) and density functional theory (DFT) tech-
niques are employed by various research groups to compute the optimized
electronic structure, band gap and charge density of rutile TiO2 [6, 7, 1, 8].
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The ab-initio computation of the elastic constants and bulk moduli of
rutile TiO2 are presented in this work using the CRYSTAL09 code [9]. The
availability of precise and accurate values of experimental lattice parameters,
elastic properties [10] and chemical bonding [11] has provided a considerable
challenge to the reliability of ab-initio computational codes. Computational
codes based upon the linear combination of atomic orbitals (LCAO) and
plane waves (PW) were employed by refs. [6, 7, 1, 8, 5] to compute the op-
timized crystalline structure of rutile TiO2. However, the inadequacy of the
existing potentials [1, 7, 12, 6] to accurately predict the physics of TiO2 has
motivated a detailed analysis of a wide range of existing and new potentials
[12, 6] The research on the structural and electronic properties has confirmed
the relative accuracy of the hybrid potentials [12, 6, 7, 1, 6].

It is our view that there has been no systematic effort to explore the elas-
tic properties of rutile TiO2 using the LCAO code CRYSTAL09 [9]. CRYS-
TAL09 possesses a combination of geometry optimization techniques, basis
sets, potentials and algorithms such as ELASTCON [9] (for second-order
elastic constants) and EOS (equation of state) [9]. The experimental val-
ues of lattice parameters, elastic constants and bulk moduli [10] of TiO2

rutile phase provided us an opportunity to confirm the relative merit of the
ELASTCON and EOS programs [13? ].

1.1. Computational procedure

We employed two different basis set combinations and a variety of poten-
tials to compute the optimized lattice constants and elastic properties (see
section 1.2 for the discussion of potentials and basis sets). The ELASTCON
[9] and EOS [9] algorithms are employed to compute the elastic constants
and bulk moduli of rutile TiO2 in an automated manner. (See Fig. {tio for
reference)

The two basis sets employed in computations are named as basis set 1 and
2 (see section 1.2 for basis set definitions). Optimized lattice parameters are
computed with HF, DFT and hybrid potentials using the two unique basis
sets. The computations of elastic constants and bulk moduli are performed
by employing the ELASTCON algorithm [9]. The computations of bulk
moduli are carried out by the EOS algorithm. Finally, the bulk moduli
obtained with ELASTCON and EOS algorithms are compared. Optimized
lattice parameters, elastic constants and bulk moduli, obtained with basis
set 1 and 2, are also compared with the experimental values where possible.
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Figure 1: The Unit Cell of Rutile TiO2.

A possible contribution of this research work is to assist a general reader
in understanding the complex dependance of the elastic properties on the
quality of basis sets, potentials, SCF process, ELASTCON and EOS param-
eters. Experimental values of lattice parameters, elastic constants and bulk
moduli of rutile TiO2 are provide an additional assistance to a researcher in
adequate implementation of ELASTCON and EOS programs.

A significant number of computations and experiments are conducted on
rutile TiO2. It is also noticed that a high precision has been achieved in the
experimental lattice parameters of rutile TiO2 [14]. The availability of the
experimental values of lattice constants, elastic constants and bulk moduli of
rutile TiO2, provides a highly valuable resource to conduct new research. In
contrast, computations of elastic constants and bulk moduli have been done
in an isolated and non-systematic manner.

A vast majority of ab-initio computations have already tried DFT ex-
change and correlation potentials [7, 15, 1]. The need of hybrid potentials
arose because HF [12] underestimated and DFT potentials overestimated
the lattice parameters of rutile TiO2. It has been found that the higher
exchange and correlation associated with the transition metals requires new
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hybrid potentials with variable exchange and correlation [7, 15, 1]. The HF,
DFT as well as hybrid potentials are employed in this work [9] to fill the gap
with regard to the efficient, accurate and systematic computations of elastic
properties of rutile TiO2.

1.2. Potentials and basis sets

The HF, local and non-local DFT potentials have consistently resulted in
inadequate results of the lattice parameters. The first principles computa-
tions done with PW codes [16, 17, 18, 19, 20, 21] can not employ the hybrid
mixing of HF exchange and DFT correlations.

Therefore, we employed hybrid potentials in our computations of elastic
properties as suggested in refs. [12, 6, 1, 7, 15]. The hybridization between
the Ti d-orbitals and O p-orbitals requires that an adequate percentage of
exchange and correlation is introduced in the potential while computing the
electronic structure of a material [22]. The DFT-PWGGA and DFT-PBE
potentials lack the exchange part and HF lacks the correlation part barring
them from being as accurate as hybrid potentials.

In addition to using hybrid potentials, the proper choice of basis sets,
SCF tolerances, ELASTCON and EOS parameters can achieve the optimum
efficiency as well as accuracy (see sections 1.5 and 1.7). Moreover, great care
must be taken to employ adequate SCF tolerances consistently.

Additionally, we selected the O-8411d1[23] and O-6311d1 basis sets for O
atoms and defined these basis sets as basis set 1 and 2, respectively. Both
basis sets used a pseudopotential basis set for the Ti atom [9]. The aim of
employing these combinations was to separate the basis set dependency from
other factors such as potentials, SCF parameters, ELASTCON and EOS
tolerances.

The purpose of selecting basis set 1 and 2 is to understand the role of a
basis set in combination with each individual potential. For basis set 1 and
2, the computations of lattice parameters, elastic constants and bulk moduli
are performed with a specific purpose to assist a general reader.

The sensitivity of of the elastic properties with respect to deviations in
the lattice parameters [1] suggests that a detailed set of potentials must be
employed to compute the lattice parameters and understand their influences
on the elastic constant values. The impact of a particular potential and
basis set on the computational values of lattice parameters, elastic constants
and bulk moduli values can be understood by careful comparisons of results
achieved for a variety of these basis sets and potentials. Further, we have
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also performed comparisons of our computational results for each potential
and basis set combination with the refs. [1, 15, 7] to confirm their research
findings. (See Fig. 2)

Figure 2: The elastic constants for Rutile TiO2.

1.3. Computational algorithms

1.4. ELASTCON

The computation of elastic constants and the bulk moduli is an automated
procedure within the ELASTCON algorithm. The computational process be-
gins with determining the crystalline symmetry of rutile TiO2. An adequate
number of strains must be applied to exploit the available symmetry in the
crystalline structure under consideration. The analytic first derivative and
the numerical second derivative of the total energy are carried out for each
specific strain. Levenberg Marquardt (LM) curve fitting [24] is used to com-
pute the required elastic constants for the rutile TiO2 symmetry. The elastic
constants can be extracted from the second derivative of the total energy as
:

Cαβ =
1

V

∂2E

∂εα∂εβ 0

. (1)
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In Eq. (1), the terms Cαβ, E, and V express the elastic constant tensor,
energy and volume of the crystalline structure respectively.

The ab-initio computations are achieved by calculating the analytic first
derivative and numerical second derivative of the total energy with respect
to the applied strain. The appropriate number of strains are applied in a
systematic manner, the elastic constants are calculated, and the compliance
coefficients are computed from Eq. (3). The compliance coefficients are then
utilized for the computation of the bulk modulus as shown in Eq. (2).

[S] = [C]−1 (2)

B = 1/(S11 + S22 + S33 + 2(S12 + S13 + S23)). (3)

The terms Sij and B in Eq. (3) express the compliance tensor elements and
bulk modulus, respectively.

1.4.1. EOS

The EOS algorithm employs changes [13] in the optimized volume of
the rutile TiO2 in a systematic manner. Additionally, the EOS algorithm
allows the user to select a range of volumes and a number of the volumes
within that range. For each of the volumes in the range, the CRYSTAL09
optimizes the internal co-ordinates and lattice parameters while keeping the
volume constant. The energy vs. volume results are then curve-fitted to
an EOS such as the Murnaghan EOS [25] shown in Eq. (4) (see ref. [13]
for the CVOLOPT option employed during the constant volume geometry
optimization for EOS computations).

The EOS algorithm in CRYSTAL09 contains a diversity of equations of
state such as Birch Murnaghan, 3rd-order Birch Murnaghan, logarithmic,
Vinet and polynomial. The 3rd-order Birch Murnaghan equation of state
algorithm utilized for computing the bulk moduli from the energy vs. volume
computations for rutile TiO2 is :

E(V ) = BoVo

[
1

B′(B′ − 1)

(
Vo
V

)B′−1

+
V

B′Vo
− 1

B′ − 1

]
+ Eo. (4)

In Eq. (4), V0 represents the volume at the minimum energy, B0 is the
bulk modulus at pressure P = 0, B

′
is the derivative of the bulk modulus at

P = 0 and E0 is the minimum energy. The bulk modulus results are obtained
with Levenberg-Marquardt curve fitting of the E vs. V computations. The
detailed discussion about the ELASTCON [9] and EOS [9] algorithms can
be seen in refs. [? 13].
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1.5. Experiments

Due to its technological importance, a significant number of experiments
have been conducted on rutile TiO2 [26, 21, 10]. The experimental results of
the electronic structure, band gap, optic and elastic properties are available of
rutile TiO2. The lattice parameters of the rutile TiO2 have been determined
[14] precisely up to the fifth significant figure. In addition, the pressure and
temperature dependence of elastic constants and bulk moduli have also been
explored through experimental means.

The experimental and computational values of elastic constants and bulk
moduli [10] of rutile TiO2 have special significance as they serve the purpose
of linking these vital branches of research. The importance of achieving a
consistency in the lattice parameters of rutile TiO2 among diverse experimen-
tal techniques and computational codes is a remarkable achievement which
is repeatedly observed by refs.[6, 7, 1, 15].

However, there are deviations in the experimental values of elastic con-
stants and bulk moduli due to their dependence on the experimental details,
pressure and temperature conditions [27]. Therefore, the sources that cause
the variations in the experimental values[28, 27, 10, 29] must also be consid-
ered. However, the dependence of the experimental results on the nature of
the experimental set up and ambient conditions can be explored and under-
stood by robust and reliable ab-initio computational methods.

Fortunately, a detailed research is carried out by ref. [30] on variations in
experimental and computational values of elastic constants and bulk moduli
of rutile TiO2. The elastic properties are changed by the change in the
temperature and pressure conditions.

An increase in pressure has shown an increase in the elastic constants
and bulk moduli values [30] for rutile TiO2. Moreover, the values of C11,C33,
C66, C12 and C13 increase with increasing pressure whereas the pressure de-
pendence of C44 is not clear. Moreover, the elastic constants are nonlinearly
dependent on the temperature. Our ab-initio computational values of elastic
constants and bulk moduli are fairly independent of any temperature and
pressure variations to provide a reliable and independent set of values.

Another important area where the experiments are performed is the vol-
ume charge density and chemical bonding of rutile TiO2. The quantitative
convergent beam electron diffraction (QCBED) technique were employed by
ref. [11] to determine the experimental volume charge density and chemical
bonding. The experimental data was utilized to confirm the contribution of
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ionic and covalent bonding in rutile TiO2. The experimental charge density
maps predicted the the p− d hybridization between Ti 3-d electrons and O
ligands.

The charge density influenced by highly localized d-orbitals of Ti atoms
influences the selection of proper basis sets and potentials in ab-initio com-
putations (see section on the potential, basis sets 1.2 and discussion of results
1.7).

Unlike the precision in the experimental lattice parameters, the computa-
tional values of lattice parameters vary in the second significant figures. The
variation in the lattice parameter values is partially originated due to the
complex nature of the chemical bonding of rutile TiO2. Moreover, the sensi-
tivity of the computational values of lattice parameters is attributed to the
choice of potentials and basis sets. However, the hybrid potentials can map
the chemical bonding and charge density of rutile TiO2 with a considerable
accuracy.

In general, the ab-initio computations are lacking the level of accuracy
of the experiments. However, the extensive computational effort by refs.
[7, 15, 1, 12, 6, 31] has provided guidance for the present study.

1.6. Computations

During the computations of lattice parameters and elastic properties, the
SCF tolerances and other computational parameters were carefully chosen.
The ELASTCON, EOS and SCF tolerances were adjusted due to the highly
localized nature of transition metal Ti d-orbitals. The ELASTCON and
other parameters were adjusted as STEPSIZE= 0.01, NUMDERIV= 7,
LGRID = (75, 434) and SHRINK= 9 × 9. The SCF tolerances were fixed
as TOLINTEG=9 9 9 9 18 and TOLDEE= 9 [21].

1.7. Discussion of results

Tables 1 and 2 show the optimized lattice parameters computed with basis
set 1 and 2, respectively. A considerable agreement between the computa-
tional and experimental values of lattice parameters computed with DFT-
PWGGA, DFT-PBE, DFT-B3LYP and DFT-B3PW potentials can be seen
in Table 1 refs. [2, 10, 4]. In contrast,the optimized lattice parameters de-
viate from the experimental values in case of basis set 2 as shown in Table
2.

Computational values of elastic constants and bulk moduli computed with
ELASTCON are presented in Tables 3 and 4. For basis set 1, the agreement
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between the computational and experimental values of elastic constants is
better with non-local DFT and hybrid potentials only. The disagreement
between the computational and experimental values of elastic constants is
significantly higher for basis 2 as shown in Table 4. The values of elastic
constants and bulk moduli are higher than the experimental values as O-
6311d1 basis set fails to represent the chemical bonding required for rutile
TiO2.

Tables 5 and 6 show the comparisons between the bulk moduli values
computed with ELASTCON and EOS algorithms. An excellent agreement
is observed between the computational values of bulk moduli achieved with
ELASTCON and EOS programs. The agreement between the bulk moduli
values points at the computational accuracy of the ELASTCON and EOS
programs. Moreover, it is important that a good agreement in computational
results should also be crosschecked with the experimental values of the bulk
moduli given at the bottom of Tables 5 and 6. Therefore, the Table 5 shows
a better agreement between the computational and experimental values [4,
21, 1, 4, 5, 12].

However, there is a considerable disagreement between the computational
and experimental values of C11, C12, C13, C33, C44, C66 and B for basis set 1
and 2 with HF and DFT-LDA potentials as shown in Tables 3 and 4. On the
other hand, the computational values of C11, C12, C13, C33, C44,C66 and B
provide a significant agreement with the experimental values computed with
DFT-PWGGA, DFT-PBE and hybrid potentials for basis set 1 as shown in
Table 3.

In addition, a slightly better agreement between the computational and
experimental values of lattice parameters, elastic constants and bulk moduli
is observed for the hybrid potentials. The hybrid potentials have shown
better agreement due to the adequate percentage of exchange and correlation
contributions to total energy of the crystal specifically important due to the
highly correlated physics of Ti transition metal. The localized nature of Ti
atom d-orbitals contributes to the higher exchange and correlation effects.

The HF, local DFT and non-local DFT potentials can not predict as
effectiveresults as hybrid potentials. Moreover, the computational values
of lattice parameters, elastic constants and bulk moduli deviate from the
corresponding experimental values for HF and DFT-LDA potentials [12, 6].
It can be easily seen in Tables 1, 2, 3, 4, 5 and 6. In fact, the lack of
correlation in HF and localized nature of DFT-LDA potentials make these
potentials less effective for transition metal oxides which possess the covalent
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as well as ionic nature of chemical bonding.
It must be mentioned that DFT-PWGGA and DFT-PBE can predict

better agreement with experimental results due to the non-localized nature
of the rutile TiO2 volume charge density. However, the agreement between
the DFT-PWGGA, DFT-PBE and experimental results of elastic constants
may not be adequate which can be confirmed by values in Tables 2, 4 and 6.

2. Part II: Computations On tetragonal BaTiO3

The perovskites are an important class of materials with applications in
the fields of memory, logic design and switching. However, the theoretical
exploration of these materials is not on par with their technological impor-
tance. Crystalline BaTiO3 possesses a perovskite geometry which may oc-
cur in cubic, tetragonal, rhombohedral or orthorhombic crystalline phases.
There is a general lack of data on the mechanical properties of all phases
of BaTiO3. However, there have been attempts [32, 33, 34, 35, 36, 37, 38]
to understand the electronic and mechanical properties of this material. For
example, the computation of elastic constants and the bulk modulus was re-
ported by Piskunov et al [39] for cubic BaTiO3 using ab-initio computational
methods. (See Fig. 7 for references)

At room temperature, BaTiO3 has tetragonal crystalline geometry. In
the past, the elastic constants and bulk modulus of tetragonal BaTiO3 could
not be computed due to the complexity of the system. Due to recent ad-
vancements in basis sets, geometry optimization, and computational power,
ab-initio computational techniques can now be employed. In this paper,
the computations of elastic constants and the bulk modulus of tetragonal
BaTiO3 are obtained with ab-initio Hartree Fock (HF), density functional
theory (DFT) and hybrid potentials using two different basis sets.

An important factor that affects the efficiency and accuracy of computa-
tion is the determination of the optimized geometry of the crystalline struc-
ture. The geometry optimization is an essential step for calculating elastic
constants and bulk moduli because it is assumed that all displacements are
made relative to a system in equilibrium. The total geometry optimization
finds both the atomic positions and lattice parameters of the unit cell which
minimize the total energy. In addition, the geometry optimization in the
CRYSTAL09 code [40] used here has features which make it an efficient pro-
gram for calculating mechanical properties. For example, there is an option
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Figure 3: The The Unit Cell of tetragonal BaTiO3.
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which permits optimization of the system at constant volume, which facili-
tates the determination of a total energy vs. volume curve which is necessary
for equation of state (EOS) calculations.

As a cross-check, the bulk modulus is found independently with the pro-
gram ELASTCON [? ] and a separate EOS program. The ELASTCON
algorithm determines the number of crystalline deformations based upon
the crystalline geometry of tetragonal BaTiO3. Geometry optimization of
the crystalline structure is carried out after each deformation. The analytic
first derivative, numerical second derivative and Levenberg Marquardt (LM)
curve fitting is performed in sequence to compute elastic constants for the
tetragonal BaTiO3. A detailed discussion of the ELASTCON program can
be found in refs. [? 44].

The task of crystalline geometry optimization of the perovskite BaTiO3

has remained a challenge because the crystalline system undergoes a sudden
decrease in energy when it is deformed. This sudden decrease in the strain vs.
energy computations has been reported earlier [32, 41, 42] and was observed
with the ELASTCON algorithm. Detailed energy vs. strain computations
were carried out to explore this sudden decrease in energy.

2.1. Calculation of elastic constants with the CRYSTAL09 code

The computation of elastic constants and the bulk modulus is an auto-
mated process in the ELASTCON program. It begins with determining the
crystalline symmetry of tetragonal BaTiO3 and deformations are applied to
exploit the available symmetries. The analytic first derivative and the nu-
merical second derivative of total energy are computed for each deformation.
Levenberg Marquardt (LM) curve fitting [24] is applied to compute the elastic
constants. The computation of the elastic constants for tetragonal BaTiO3

is complicated due to its crystalline geometry and the position of the atoms
in the perovskite crystalline structure. With the lowering of crystalline sym-
metry, the number of independent elastic constants increases and geometry
optimization steps are also increased.

The linear deformation of solids is expressed by Hooke’s law as:

σij =
∑
kl

Cijklεkl (5)

where i, j, k, l = 1, 2, 3, σi,j,k,l, εk,l and Ci,j,k,l are stress, strain and second-
order elastic constant tensors.

12

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 
ISSN 2229-5518 

1772

IJSER © 2015 
http://www.ijser.org 

IJSER



The second-order elastic constants may be computed with different tech-
niques. Molecular dynamics [43] and ab-initio computational techniques are
two prominent methods to compute the elastic constants and bulk modu-
lus. The ab-initio computational techniques compute the second-order elas-
tic constant (SOEC) from the total energy. The elastic constants can be
computed from the Taylor series expansion of the total energy with respect
to the applied strains, as shown in Eq. (6). The Taylor series terms up to
the second-order may be utilized for the estimation of the elastic constants if
the strains are very small and the higher order terms have negligible effects
on the computational results.

E (V, ε) = E(V0) +
∑
α

σαεα +
V

2

∑
αβ

Cαβεαεβ + ..... (6)

The terms α, β = 1, .., 6 express the elastic constants in Voigt notation and V0
is the equilibrium volume. The second term in Eq. (6) may be ignored if the
crystalline geometry of the system is fully optimized. The third term in Eq.
(6) can be rewritten to express the elastic constant as the second derivative
of the total energy with respect to the applied strain in a crystalline direction

Cαβ =
1

V

∂2E

∂εα∂εβ 0

. (7)

In Eq. (7), the terms Cαβ, E, and V express the elastic constant tensor,
energy and volume of the crystalline structure, respectively.

The ab-initio computations are achieved by calculating the analytic first
derivative and numerical second derivative of the total energy with respect
to the applied strain. The appropriate number of strains are applied in a
systematic manner, the elastic constants are calculated, and the compliance
coefficients are computed from Eq. (8). The compliance coefficients are then
utilized for the computation of the bulk modulus as shown in Eq. (9).

[S] = [C]−1 (8)

B = 1/(S11 + S22 + S33 + 2(S12 + S13 + S23)). (9)

The terms Sij and B in Eq. (9) express the compliance tensor elements and
bulk modulus, respectively.
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2.2. Computation of bulk modulus by equation of state (EOS)

The EOS algorithm utilizes systematic changes [44] in the volume around
the optimized equilibrium state of a crystalline structure. The EOS calcu-
lations are carried out by selecting a range of volumes around a minimum
total energy at an equilibrium state of the tetragonal BaTiO3 crystalline
structure. The EOS algorithm permits selection of a range of volumes and a
number of volumes within that range. At each of the volumes in the range,
the constant volume optimization is carried out. The energy vs. volume
results are curve-fitted to an EOS such as Murnaghan EOS [25] given in Eq.
(10).

The Crystal09 code [40] can accomplish an optimization of the internal
co-ordinates and lattice parameters while keeping the volume constant (see
ref. [40] for the detailed description of CVOLOPT option of geometry opti-
mization). The EOS algorithm in CRYSTAL09 computes the energy for a
range of volumes around the optimized equilibrium volume, and is equipped
with a wide variety of equations of state such as Birch Murnaghan, 3rd order
Birch Murnaghan, logarithmic, Vinet and polynomial. In this paper, the 3rd
order Birch Murnaghan equation of state algorithm was utilized for comput-
ing the bulk modulus from the energy vs. volume computations as expressed
in Eq. (10):

E(V ) = BoVo

[
1

B′(B′ − 1)

(
Vo
V

)B′−1

+
V

B′Vo
− 1

B′ − 1

]
+ Eo. (10)

In Eq. (10), V0 represents the volume at the minimum energy, B0 is the
bulk modulus at pressure P = 0, B

′
is the derivative of the bulk modulus

B at P = 0 and E0 is the minimum energy. The optimization of crystalline
geometry at each step is done during energy-volume (E-V) calculations. The
bulk modulus results are obtained with Levenberg-Marquardt curve fitting
of the E vs. V computations.

2.3. Choice of basis sets

The selection of basis sets affects the calculation of the elastic constants
and bulk modulus as reported in refs. [45, 46, 6, 23], particularly for a
material such as BaTiO3. The first basis set chosen uses the 8-411d1 basis
set for oxygen and HAYWSC ECP basis set for Ba and Ti atoms from the
Crystal06 basis set library [40] because of its prior use in BaTiO3 [39, 6]. For
comparison, a second basis set, used previously for urea [45], was selected
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using a 6-31d1 set for oxygen and the HAYWSC ECP for Ba and Ti. We
have named the combination of basis sets 8-411d1 and HAYWSC ECP as
basis set 1 and 6-31d1 and HAYWSC ECP as basis set 2.

As will be shown, the variation in the values of elastic constants and bulk
modulus confirms the fact that the choice of basis sets can severely affect the
results. The choice of basis sets indicates a trade-off between the reliability of
the results and the required computational time. Our approach is to check
the credibility of the results by employing the basis sets in two different
algorithms for the bulk modulus and comparing the results attained using
these basis sets with each other and experiment. In contrast with 6-31d1,
the 8-411d1 basis set is optimized to suit the nature of chemical bonding and
atomic position of oxygen in the transition metal oxide ScMnO3 [23]. The
positions of the oxygen atoms in ScMnO3 is similar to a BaTiO3 unit cell
which has a slightly off-centered Ti atom caged in the middle of an octahderal
formed by six oxygen atoms. Because of this, basis set 1 (with the 8-411d1
set for oxygen) is expected to provide better results for BaTiO3.

2.4. Selection of Hartree Fock, DFT and hybrid potentials

The computations of elastic constants and the bulk modulus were per-
formed with the potentials HF, DFT and hybrid mixing of the former with
the latter. The DFT and hybrid exchange correlation potentials are employed
due to the lack of correlation of HF as reported in [39].

In a hybrid potential, there is a significant balance between the electron
exchange and correlation for a crystal field formed between the transition
metal Ti and O nearest neighbors. Due to the effect of the crystal field, the
transition metal oxides are insulators with a significantly higher band gap.
This is unlike the situation in oxygen with s and p electrons resulting in an
itinerant and delocalized electron gas. These d electrons are highly localized
resulting in wide band gaps and a significant change in the probability density
of inter-atomic and intra-atomic orbitals. The electron localization affects the
choice of a basis set for oxygen atoms. It is very important that the basis set
is optimized for the valence electrons of oxygen which are covalently bonded
with a transition metal.

Corà [6] utilized HF, DFT and hybrid exchange correlation potentials
and a 8-411d1 basis set for the oxygen atom of cubic BaTiO3 to calculate
the lattice constants, bulk modulus, and band gap. In that work, hybrid
exchange and correlation potentials were used with an optimum percentage
of HF exchange to account for the exchange and correlation parts of a highly
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correlated transition metal oxide. Hybrid exchange correlation potentials
were found to be efficient, reliable and accurate in comparison with HF and
DFT potentials. Based on that prior work, hybrid exchange potentials are
used here for the tetragonal phase of BaTiO3.

2.5. Discussion of computational results

The comparison of lattice constants a, c and the ratio c/a with experi-
mental values is shown in Tables 7 and 8 for basis sets 1 and 2, respectively.
The values of optimized lattice constants have shown a better agreement with
the experimental values for basis set 1 than basis set 2. The computational
values of a and c are slightly higher than the experimental values for DFT-
PWGGA, DFT-BLYP, DFT-B3LYP and DFT-B3PW exchange correlation
potentials employed with basis set 1. The optimized lattice constants a and
c computed with HF and DFT-LDA exchange correlation are included for
reference but are not expected to produce good agreement with experiment
because the HF potential has no correlation and the DFT-LDA assumes a
homogeneous electron gas. Interestingly, the optimized values of lattice con-
stants a and c computed with basis set 2 show relatively large deviations
from the experimental values of 3.99 and 4.03. The values of the optimized
lattice constants a and c are equal for Hartree Fock, exchange correlation and
hybrid potentials employing basis set 2 as shown in Table 8. The fact that
the tetragonal character has been missed for all potentials chosen suggests
that basis set 2 is inadequate for this system. It is generally observed that
local DFT (LDFT) exchange correlation potentials underestimate and non-
local DFT (NLDFT) exchange correlation potentials overestimate the lattice
constants.

The computational values of elastic constants and bulk moduli show a
trend of better agreement with the experimental values for basis set 1 than
for basis set 2 as shown in Tables 9 and 10. Likewise, the comparison of com-
putational values of bulk moduli computed with the EOS method indicates a
better agreement with experimental values as shown in Tables 11 and 12 for
basis set 1 relative to basis set 2, respectively. Also given in those tables are
the values of the bulk modulus determined from the ELASTCON calcula-
tion and the agreement in B using two, independent, methods demonstrates
the quality of the numerical methods employed. The computational values of
bulk moduli in Table 11 calculated with basis set 1, for DFT-BLYP, PWGGA,
B3LYP and B3PW potentials, fall within the range of experimental values of
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bulk modulus reported by [47]. The trend of consistency between the com-
putational and experimental values of elastic constants and bulk moduli for
basis set 1 vs. basis set 2 can also be seen by comparing results of elastic
constants and bulk moduli shown in Figures 4-??. Comparing Figs. 4 and
5, it is evident that basis set 2 produces results for the bulk modulus con-
sistently larger than experiment, whereas the basis set 1 results effectively
bracket experiment. Those figures also show the good agreement between
the two methods used to compute B. Fig. 6 using basis set 1 shows better
agreement with experiment for the elastic constants than basis set 2 used in
Fig. ??, particularly for the hybrid potentials. Figs. 6 and ?? also indicate
the spread in experimental values.

The discrepancy in results for lattice constants, elastic constants, and
bulk modulus from basis set 2 and experiment [48, 49] is the consequence
of the coefficients and exponents of the outermost Gaussian functions in a
6-31d1 basis set for the oxygen atom [45]. The 6-31d1 basis set was initially
optimized for the oxygen atom in a unit cell of urea [45]. Therefore, the val-
ues of coefficients and exponents of these sp Gaussians are significantly larger
to optimize the basis set for the requirements of hydrogen bonding and the
peculiar position of the oxygen atom in a unit cell of urea[45, 46]. As a result,
the values of elastic constants, particularly C11, C33 and consequently bulk
moduli (B), are largely affected by the values of these coefficients and expo-
nents of sp type Gaussian functions. This is apparent from Table 10 where
the values of C11 and C33 are consistently much larger than experiment and
the results using basis set 1, Table 9. The basis sets are merely approxi-
mations of wavefunctions for valence electrons taking part in the chemical
bonding. Therefore, the difference in the nature of chemical bonding in a
urea vs. BaTiO3 unit cell increases this inconsistency in the computational
values for basis set 2 in comparison with basis set 1 and experimental values.
The nature of chemical bonding is complex in BaTiO3 and is different from
the hydrogen bonding of urea. Moreover, the basis set 8-411d1 has already
been optimized for ab-initio computations of magnetic properties of ScMnO3

[23]. The transition metal oxide like BaTiO3 is a highly correlated material
system due to the contracted nature of its d orbitals. The localized nature
of transition metal oxides demands an oxygen basis set which is specially
optimized to suit these transition metal oxides as in refs. [6, 23, 39].

Regarding basis set 1, the DFT-LDA have shown higher bulk modulus
values due to the underestimation of the optimized lattice constant values,
whereas the computations done with DFT-PWGGA and DFT-BLYP have

17

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 
ISSN 2229-5518 

1777

IJSER © 2015 
http://www.ijser.org 

IJSER



shown lower values of bulk modulus due to the overestimation of optimized
lattice constants. The computations done with hybrid potentials have shown
the optimum values of bulk modulus as a consequence of the fact that the op-
timized lattice constants are comparatively close to the experimental values.
In contrast with these results, the computational values of bulk modulus are
higher with the basis set 2 as reported in Tables 11 and 12. The large increase
in computational values of bulk modulus for the basis set 2 is attributed to
the deviation in optimized lattice constants from the experimental values.

The computational results obtained with the PWGGA and hybrid poten-
tials and basis set 1 are expected to be relatively accurate based on prior work
for cubic BaTiO3 [39] and rutile TiO2 [? ] crystalline systems. Moreover,
the values of bulk modulus computed with ELASTCON and EOS algorithms
are sufficiently close to each other for the same potential and basis set. These
facts point to the importance of selecting a variety of basis sets, potentials
and algorithms and comparing the results. Therefore, the computational
values of elastic constants computed with hybrid potentials are reliable if we
ignore the variations in computations originating due to the order-disorder
nature of the tetragonal BaTiO3.

While comparing the results of elastic constants and bulk moduli obtained
with basis set 1 vs. experimental values and basis set 2 vs. experimental
values, the former shows a relatively better agreement in comparison with
the latter[50, 51, 52, 53, 47]. This agreement is specifically significant in the
case of a hybrid exchange and correlation potential used with basis set 1.
The computational accuracy of hybrid exchange and correlation potentials
has been reported by Corà [6]. The computational values of bulk moduli
of cubic BaTiO3 are highly accurate for the optimum percentage of Hartree
Fock and DFT exchange and DFT correlation potential. The accuracy of
a hybrid exchange correlation potential is ingrained in the exchange and
correlation parts of hybrid potential which improves the lattice parameters,
bulk modulus and band gap of cubic BaTiO3 as reported in ref. [6].

Regarding any comparisons made of computational to experimental val-
ues, it should be noted that for this system there is a considerable varia-
tion between the experimental values of elastic constants and bulk moduli
[50, 51, 53, 47]. These variations in computational and experimental values
of elastic constants and bulk moduli [50, 52, 54, 37, 47] have been constantly
observed in a variety of experimental results. The causes of variation in ex-
perimental and computational values of elastic constants and bulk modulus
may not be completely known. For the case of computational values, there
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are significant contributions due to an inefficient basis set, as in case of basis
set 2, which makes the choice basis set so vital for the accuracy of results.
On the other hand, the variation in computational and experimental values
may not be an isolated effect due to the effect of the crystalline geometry on
the computational and experimental values.

Figure 4: The computational values of bulk moduli are shown for basis set 1 computed
with HF, DFT and hybrid functionals. The minimum and maximum experimental values
of bulk moduli, titled as Exp.(Min.) and Exp.(Max.), are taken from ref. [47]. All values
are in GPa.
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Figure 5: The computational values of bulk moduli are shown for basis set 2 computed
with HF, DFT and hybrid functionals. The minimum and maximum experimental values
of bulk moduli, titled as Exp.(Min.) and Exp.(Max.), are taken from ref. [47]. All values
are in GPa.
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Figure 6: The computational and experimental values of elastic constants and bulk mod-
uli are shown for basis set 1 computed with HF, DFT and hybrid exchange correlation
potentials. The experimental values titled as Exp.1, Exp.2, Exp.3 and Exp.4 are taken
from refs.[50, 51, 53, 52, 47]. All values are in GPa.
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Figure 7: .

22

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 
ISSN 2229-5518 

1782

IJSER © 2015 
http://www.ijser.org 

IJSER



Table 1: The values of relaxed lattice constants (in Å) and ambient volume (in
Å3) and total energy, E (in a.u.), for rutile TiO2. Hartree-Fock, DFT exchange
correlation and hybrid potentials were employed. Basis sets were selected
from CRYSTAL09 basis set library [9]. (see sections 1.1, 1.2, 1.5 and 1.7 for
details on the computational parameters, basis sets, potentials and analyses of
results.)

a(A0) c(A0) V ol.((Ao)3)) Density(g/cm3) E(a.u.)
HF 4.568 2.980 62.11 4.264 -415.125024

LDA 4.559 2.932 60.98 4.351 -415.4375020
PWGGA 4.640 2.976 64.08 4.140 -417.745101

PBE 4.647 2.978 64.32 4.125 -417.450436
BLYP 4.66 3.01 65.67 4.040 -417.646742

B3LYP 4.629 2.976 63.78 4.160 -417.525784
B3PW 4.599 2.961 62.63 4.236 -417.647585
PBE0 4.627 2.973 63.69 4.627 -417.800715

Exp.[2, 10, 4] 4.59 2.96 62.36 - -
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Table 2: The values of relaxed lattice constants (in Å) and ambient volume (in
Å3) and total energy, E (in a.u.), for rutile TiO2. Hartree-Fock, DFT exchange
correlation and hybrid potentials were employed. Basis sets were selected
from CRYSTAL09 basis set library [9]. (see sections 1.1, 1.2, 1.5 and 1.7 for
details on the computational parameters, basis sets, potentials and analyses of
results.)

a(A0) c(A0) V ol.((Ao)3)) Density(g/cm3) E(a.u.)
HF 4.561 2.991 62.24 4.262 -415.030280

LDA 4.539 2.904 59.84 4.433 -4.15.303870
PWGGA 4.619 2.946 62.82 4.220 -417.622557

PBE 4.625 2.949 63.05 4.204 -417.329627
BLYP 4.657 2.971 64.41 4.117 -417.520930
PBE0 4.571 2.940 61.46 4.317 -417.245299

B3LYP 4.607 2.957 62.75 4.225 -417.408695
B3PW 4.583 2.942 61.81 4.292 -417.533064

Exp.[55] 4.593 2.958 62.40 - -
Exp. [2, 10] 4.59 2.96 62.36 - -

Table 3: The values of elastic constants (in GPa) for rutile TiO2. Hartree-Fock,
DFT exchange correlation and hybrid potentials were used. Basis sets were
selected from CRYSTAL09 basis set library [9]. All values are in GPa. (see
sections 1.1, 1.2, 1.5 and 1.7 for details on the computational parameters, basis
sets, potentials and analyses of results.)

C11 C12 C13 C33 C44 C66 B
HF 363.88 216.43 184.34 625.97 164.08 276.93 269.71

LDA 311.10 210.59 175.15 504.48 159.31 252.60 243.15
PWGGA 266.41 177.25 148.88 462.40 138.23 223.33 208.06

PBE 261.66 176.04 146.29 457.73 135.14 221.06 205.14
BLYP 255.76 133.27 142.78 477.90 153.90 206.05 187.60
PBE0 277.372 184.917 155.401 494.276 139.180 234.103 217.12

B3LYP 281.36 186.22 156.70 505.70 140.29 236.43 219.85
B3PW 293.89 193.64 164.11 517.48 146.55 245.56 229.13

Exp.[10] 268.00 175.00 147.00 484.00 124.00 190.00 212.00,230.00
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Table 4: The computational values of elastic constants and bulk moduli for
rutile TiO2. Hartree-Fock, DFT exchange correlation and hybrid potentials
were employed. Basis sets were selected from CRYSTAL09 basis set library
[9]. All values are in GPA. (see sections 1.1, 1.2, 1.5 and 1.7 for details on the
computational parameters, basis sets, potentials and analyses of results.)

C11 C12 C13 C33 C44 C66 B
HF 393.38 237.08 209.69 662.10 170.85 302.60 295.27

LDA 170.95 384.96 204.67 577.12 130.39 278.53 265.91
PWGGA 222.60 273.01 182.34 522.34 123.35 246.21 237.24

PBE 220.46 269.67 180.65 517.01 122.22 243.67 234.72
BLYP 259.83 225.99 174.58 508.73 123.33 235.50 231.32
PBE0 267.06 281.97 203.06 578.72 138.82 - -

B3LYP 295.27 239.63 192.98 562.44 137.12 261.30 254.96
B3PW 268.97 269.36 197.01 568.79 136.54 267.48 257.44

Exp.[10] 268.00 175.00 147.00 484.00 124.00 190.00 212.00,230.00

Table 5: Equation of state (EOS) computations of bulk moduli for rutile TiO2.
Hartree-Fock, DFT exchange correlation potentials and hybrid potentials were
employed. Basis sets were selected from CRYSTAL09 basis set library [9]. (see
sections 1.1, 1.2, 1.5 and 1.7 for details on the computational parameters, basis
sets, potentials and analyses of results.)

BEOS(GPa) Vo(Å
3) E0(a.u.) BEL(GPa)

LDA 241.02 60.98 -415.4374458 243.15
PWGGA 205.84 64.09 -417.745066 208.06

PBE 202.42 64.33 -417.450408 205.14
BLYP 190.81 65.93 -417.646784 187.60
B3LYP 216.58 63.81 -417.525805 219.85
B3PW 226.04 62.66 -417.647557 229.13

HF 266.65 62.29 -415.125014 269.71
Exp.[10] - - - 212.00,230.00
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Table 6: Equation of state (EOS) computations of bulk moduli for rutile TiO2.
Hartree-Fock, DFT exchange correlation potentials and hybrid potentials were
employed. Basis sets were selected from CRYSTAL09 basis set library [9]. (see
sections 1.1, 1.2, 1.5 and 1.7 for details on the computational parameters, basis
sets, potentials and analysis of results.)

BEOS(GPa) Vo(Å
3) E0(a.u.) BEL(GPa)

HF 292.73 62.31 -415.030267 295.27
LDA 278.99 59.84 -415.303858 282.68

PWGGA 238.71 62.87 -417.622543 237.24
PBE 235.96 63.10 -417.329611 234.72

BLYP 229.03 64.45 -417.520911 231.32
B3LYP 252.43 62.81 -417.408677 254.96
B3PW 256.16 61.83 -417.533045 257.44

Exp.[10] - - - 212.00,230.00

Table 7: The values of relaxed lattice constants (in Å), ambient volume (in Å3),
and total energy, E (in a.u.), for tetragonal BaTiO3. The computations were
done by using Hartree-Fock, DFT LDA, PWGGA, BLYP, B3LYP and B3PW
potentials using basis set 1. (see section 2.3).

a c c/a Vol. E
HF 3.96 4.26 1.07 67.17 -307.5388

LDA 3.93 3.93 1.00 61.12 -307.8828
PWGGA 4.00 4.03 1.00 64.75 -309.5928

BLYP 4.05 4.14 1.02 68.12 -309.4749
B3LYP 4.01 4.10 1.02 66.15 -309.4084
B3PW 3.98 4.02 1.01 63.75 -309.5360

Exp. [48, 49] 3.99 4.03 1.01 64.16 -
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Table 8: The values of relaxed lattice constants (inÅ), ambient volume (in Å3),
and total energy, E (in a.u.), for tetragonal BaTiO3. The lattice constants are
computed with Hartree-Fock, DFT LDA, PWGGA, BLYP, B3LYP and B3PW
potentials with basis set 2 (see section 2.3). O-631d1 basis set for O atom was
not optimized for transition metal oxides resulting in the lattice parameters
that differ significantly from experimental values.

a c c/a Vol. E
HF 3.98 3.98 1.00 63.23 -307.4627

LDA 3.90 3.90 1.00 59.50 -3.07.7595
PWGGA 3.95 3.95 1.00 61.94 -309.4862

BLYP 4.00 4.00 1.00 64.06 -309.3636
B3LYP 3.97 3.97 1.00 62.66 -309.3082
B3PW 3.94 3.94 1.00 61.27 -309.4393

Exp. [48, 49] 3.99 4.03 1.01 64.16 -

Table 9: The elastic constants and bulk modulus computational results using the
Hartree Fock and DFT LDA, PWGGA, BLYP, B3LYP and B3PW potentials
with basis set 1 (see section 2.3). All values are in GPa.

C11 C12 C13 C33 C44 C66 B
HF 308. 128. 88. 66. 121. 163. 62.

LDA 444. 93. 93. 444. 224. 224. 210.
PWGGA 354. 76. 56. 227. 175. 194. 139.

BLYP 285. 82. 58. 146. 73. 160. 110.
B3LYP 315. 95. 64. 166. 76. 177. 123.
B3PW 371. 89. 61. 228. 148. 204. 145.

Exp.[50] 211±6 107±5 114±8 160 ±11 56.2±1.7 127±4 125-141[47]
[51] 242.7 128.3 122.6 147.9 54.9 120.1 -
[53] 275.1 178.9 151.55 164.8 54.3 113.1 -
[52] 222.9 - 147.0 240.0 61.7 133.7 -
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Table 10: The elastic constants and bulk modulus computations using the
Hartree Fock, DFT LDA, PWGGA, BLYP, B3LYP and B3PW potentials with
basis set 2 (see section 2.3). All values are in GPa.

C11 C12 C13 C33 C44 C66 B
HF 408. 154. 154. 408. 185. 185. 239.

LDA 480. 129. 129. 480. 163. 163. 246.
PWGGA 445. 107. 107. 445. 214. 214. 220.

BLYP 382. 111. 111. 382. 185. 185. 201.
B3LYP 414. 123. 123. 414. 200. 200. 220.
B3PW 463. 119. 119. 463. 223. 223. 234.

Exp.[50] 211±6 107±5 114±8 160 ±11 56.2±1.7 127±4 125-141[47]
[51] 242.7 128.3 122.6 147.9 54.9 120.1 -
[53] 275.1 178.9 151.55 164.8 54.3 113.1 -
[52] 222.9 - 147.0 240.0 61.7 133.7 -
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Table 11: Equation of state results for tetragonal BaTiO3 with the Birch Mur-
naghan 3rd order equation. The energy-volume curve was fitted with eleven
points and the range of volume around equilibrium was chosen as ±10% using
basis set 1 (see section 2.3). The value of the bulk modulus, BEL, as calculated
from Eq. (9) is given in the last column for comparison.

BEOS(GPa) Vo(Å
3) E0(a.u.) BEL(GPa)

HF 62. 67.41 -307.5386 62.
LDA 198. 61.16 -307.8827 210.

PWGGA 144. 64.75 -309.5928 139.
BLYP 96. 68.09 -309.4749 110.

B3LYP 104. 66.07 -309.4083 123.
B3PW 149. 63.82 -309.5360 145.

Exp.[47] 125-141 - -

Table 12: Equation of state data for BaTiO3 using the 3rd-order Birch Mur-
naghan equation. Eleven points in the energy-volume curve were used and
the range of volumes used around equilibrium was ±10% using basis set 2 (see
section 2.3). The value of the bulk modulus, BEL, as calculated from Eq. (9)
is given in the last column for comparison.

BEOS(GPa) Vo(Å
3) E0(a.u.) BEL(GPa)

HF 202. 64.23 -307.4678 239.
LDA 238. 59.07 -307.7672 246.

PWGGA 221. 61.93 -309.4862 220.
BLYP 203. 64.09 -309.3636 201.

B3LYP 229. 62.77 -309.3082 220.
B3PW 230. 61.41 -309.4395 234.

Exp. [47] 125-141 - -

3. Part III: Conclusions

3.1. Rutile Titanium dioxide (TiO2)

The technological applications of Titanium dioxide (TiO2) have generated
a significant research activity in experimental and computational sciences.
The advantages of the experimental and computational research has resulted
in an enhancement in testing the merit of basis sets, potentials and new pro-
grams. The elastic properties of rutile TiO2 are computed and compared
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with experimental values. The dependance of experimental values on ex-
perimental set up, temperature and pressure conditions can not be ignored.
The computations of elastic constants and bulk moduli by a wide variety
of ab-initio techniques provide results to generate fresh experiments on this
material.

We have tried to separate the factors that determine the quality of compu-
tational results of the lattice parameters and elastic properties. The non-local
DFT and hybrid potentials present better agreement with the experimental
values of lattice parameters, elastic constants and bulk moduli. However, the
disagreement between the computational and experimental values of the elas-
tic constants and bulk moduli for HF and DFT-LDA potentials [16, 17, 19]
is quite significant.

It is worth mentioning that computations of rutile TiO2 with different
potentials and basis sets is motivated by a variety of challenges related with
the existing basis sets and potentials. For a crystalline system such as rutile
TiO2, which has considerable visibility in the experimental research arena,
an intergrated set of computational results have significant utility. These
computations can guide researchers to appreciate the subtle influcences of
the charge density on lattice parameters and elastic properties of rutile TiO2.

3.2. Tetragonal BaTiO3

The second order elastic constants and equations of state parameters were
obtained for tetragonal BaTiO3. We have observed close agreement between
the values of the bulk modulus independently computed with ELASTCON
and EOS methods. There have been attempts [56, 57, 58] to compute the dif-
ferent properties of tetragonal BaTiO3. However, the computational values
of elastic constants and bulk modulus of tetragonal BaTiO3 are not available
in the literature. We have further verified the computational accuracy of the
results by implementing different algorithms, potentials and basis sets for
rutile TiO2 [? ] and cubic BaTiO3 [39]. The computational results obtained
with these crystalline systems have provided additional evidence for the ac-
curacy of the computational results presented here for tetragonal BaTiO3.
It has been observed that the crystalline structure and position of atoms in
tetragonal phase [59, 60] has increased the complexity of our computations.
The agreement in computational values of bulk modulus provided an oppor-
tunity to verify the computational accuracy of elastic constants of tetragonal
BaTiO3.
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The computational results of the optimized lattice constants obtained
with basis set 1 and exchange correlation potential PWGGA and hybrid
exchange correlation potentials B3LYP and B3PW have shown good agree-
ment with respect to experiment. Therefore the employment of HF, DFT
and hybrid exchange correlation potentials have essentially reinforced the
computational merit of hybrid potentials as was found by Corà [6] for cubic
phase BaTiO3. The variations in computational values of elastic constants
and bulk moduli are mainly attributed to the quality of basis sets and choice
of potential. Basis set 1 is better designed to represent the interatomic and
intra-atomic chemical nature of O, Ti and Ba for BaTiO3 and, as expected,
provided better agreement with experiment than basis set 2. It is important
to note that differences in the sp orbital basis set for oxygen resulted in large
differences in the C11 and C33 elastic constants. The inconsistency in compu-
tational results of elastic constants and bulk modulus for the two chosen basis
sets compared with experimental values points at the importance of choosing
an appropriate basis set for reliable and accurate ab-initio computations.

The order -disorder nature [60] of perovskiteBaTiO3 is another important
factor that makes the computation of optimum values of the bulk modulus
problematic, requiring accurate basis sets and potentials. It has been ob-
served that the computation of the bulk modulus for tetragonal BaTiO3 is
coupled intimately with the geometry optimization of its complex crystalline
structure. Slight deviations in the values of optimized lattice constants a and
c have shown large effects on the computational values of bulk moduli.

Based upon our computational results and the experimental data on
tetragonal BaTiO3, we conclude that there is a degree of consistency in
the elastic properties. Further work on basis sets and exchange correlation
potentials is necessary for improved comparison with experiment. Addition-
ally, improvements in the experiments are important for continued progress
on this important crystalline system.

A close look at the computational results of the Rutile TiO2 and tetrag-
onal BaTiO3 reveals the anomaly in the elasticity of the tetragonal BaTiO3.
The anomaly is highly pronounced in some crystal directions and less pro-
nounced in other directions. It took us costly computations of Rutile TiO2
to expose and reveal the complexity of tetragonal BaTiO3 phase. The novel
extraction has been reported by us for the first time through the complex
computational formalism.
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